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Abstract. Mechanical theorem provers have been shown to expose proof 
errors, some of them serious, that humans miss. Mechanical provers will 
be applied more widely if they are easier to use. The tool TAME (Timed 
Automata Modeling Environment) provides an interface to the prover 
PVS to simplify specifying and proving properties of automata models. 
Originally designed for reasoning about Lynch-Vaandrager (LV) timed 
automata, TAME has since been adapted to other automata models. 
This paper shows how TAME can be used to specify and verify prop- 
erties of I/O automata, a class of untimed automata. It also describes 
the experiences of a new TAME user (the first author) who used TAME 
to check Lamport-style hand proofs of invariants for two applications: 
Romijn's solution to the RPC-Memory Problem [21,20] and the verifi- 
cation by Devillers et al. of the tree identify phase of the IEEE 1394 bus 
protocol [9,8]. For the latter application, the TAME mechanization of 
the hand proofs [8] is compared with the more direct PVS proofs [9]. 
Improvements to TAME in response to user feedback are discussed. 

1    Introduction 
When done by hand, even the most carefully crafted formal specifications and 
proofs may contain inconsistencies and other errors, some of them serious. Me- 
chanically supported formal methods, such as mechanical provers, can expose 
many errors that humans miss (see, e.g., [5,12]). Not only can mechanical check- 
ing of a formal specification and its properties confirm the correctness of the 
properties, it can also reduce the human effort needed to expose defects in the 
specification and in the statements of properties while the specification and 
proofs are under development [9]. 

A major barrier to more widespread use of mechanical proof methods in 
industry is the overhead and complexity of using a mechanical theorem prover. 
One must first encode a specification in the language of the prover and then 
must establish properties of the specification in the logic of the prover, using 
proof steps that often do not correspond to proof steps natural for a human. 
To date, most mechanical verification has been done by researchers with highly 
detailed knowledge of a mechanical prover, such as PVS [23]. The frequency 
of mechanical verification can be expected to increase if tools such as PVS are 
easier, and thus more cost-effective, to use. 

The tool TAME (Timed Automata Modeling Environment) [3,5,4,6] pro- 
vides an interface that simplifies specifying and proving properties of Lynch- 
Vaandrager (LV) timed automata [18] using PVS. TAME is designed to make 
mechanically supported formal methods (such as PVS) easier to use by sim- 
plifying the encoding of an automaton specification, by supporting proofs of 
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properties through natural proof steps, and by presenting saved proofs in human- 
understandable form. A major goal of TAME is to facilitate the checking of hand 
proofs with PVS. 

The TAME approach to mechanized theorem proving may be contrasted 
with the approach of Devillers, Griffioen, Romijn, and Vaandrager, whose PVS 
proofs for the properties in [9] do not follow the hand proofs given in [8], but 
were created independently. For this reason, Devillers et al. question the utility 
of the hand proofs. In contrast, we view the existence of hand proofs—or, at 
least, human-understandable mechanized proofs—as useful, because such proofs 
explain why a specification has a given property. A property that holds for unex- 
pected reasons raises the question of whether the specification actually captures 
the intended behavior. Mechanized proofs that follow the structure of the hand 
proofs confirm not only the correctness of the properties but the correctness of 
the given reasons that the properties hold. 

This paper makes four contributions. First, we demonstrate by example how 
TAME can be applied to I/O automata to check Lamport-style hand proofs. 
Originally designed to specify and verify properties of LV timed automata, 
TAME has been adapted to work with other automata models, including the (un- 
timed) I/O automata model and the automaton model that underlies SCR [6]. 
Previous proofs checked with TAME were natural language (but not Lamport- 
style) hand proofs. Second, the paper describes the positive experience of a new 
user (the first author), who used TAME to check the Lamport-style proofs of 
invariant properties for two applications: Romijn's solution of the RPC-Memory 
Problem [21,20], and the verification by Devillers et al. of the tree identify phase 
of the IEEE 1394 bus protocol [9,8]. Third, the paper describes improvements 
to TAME that resulted from the first author's feedback. Finally, the paper com- 
pares two approaches to using PVS to prove properties of an I/O automata 
model: one approach uses TAME, while the second uses PVS directly. 

Section 2 briefly reviews PVS, I/O automata, and TAME. Based on the first 
author's use of TAME and the use of PVS described in [9] to prove properties 
of the TIP (Tree-Identify Protocol) specification, Section 3 contrasts the TAME 
approach for specifying and proving properties of I/O automata with the direct 
use of PVS. Section 4 discusses how specifications of I/O automata and Lamport- 
style proofs of invariant properties can be translated into TAME and presents 
the results of the first author's application of TAME to TIP as well as to several 
I/O automata from [21]. Section 5 discusses the first author's experience with 
TAME and resulting improvements to TAME, Section 6 describes related work, 
and Section 7 presents some conclusions and our future plans. 

2    Background 
PVS. PVS [23] is a higher order logic specification and verification environment 
developed by SRI. Proof steps in PVS are either primitive steps or strategies 
defined using primitive steps, applicative Lisp code, and other strategies. Strate- 
gies may be built-in or user-defined. PVS's support for user-defined strategies 
allows the construction of specialized prover interfaces, such as TAME, on top 
of PVS. TAME exploits both the PVS support for user-defined strategies and 
recent enhancements to PVS, including 1) support for labeling formulae appear- 
ing in proof goals and for documenting proofs with comments, 2) some new 
finer-grained primitive steps, and 3) new access functions and documentation 



that allow strategics to incorporate computations based on the internal data 
structures maintained by PVS. 

One important PVS feature is its very rich strong type system. Because PVS 
permits the user to define subtypes using arbitrary predicates, the type correct- 
ness of PVS specifications is undecidable, and the PVS typechecker typically 
generates several type correctness conditions (TCCs) that must be verified be- 
fore a specification is "type correct". PVS has a general strategy that proves 
many TCCs automatically; however, the user is sometimes obliged to supply a 
proof. When a TCC cannot be proved, usually some subtle inconsistency in the 
specification requires correction. 
The I/O Automata Model. In the I/O automata model [17], a system is 
described as a set of I/O automata, interacting by means of common actions. 
For verification purposes, these interacting automata can be composed into a 
single automaton by combining corresponding output and input actions. Every 
I/O automaton is described by a set of states, some of which are initial states; 
a set of actions (input, output, and internal); and a transition relation coupling 
a state-action pair with another state. In a typical I/O automaton specification 
(see Appendix A), a state is an assignment of values to state variables. For 
deterministic automata, which include all the automata discussed in this paper, 
the transition relation can be described as a (partial) function that maps an 
action and an old state in which the action is enabled to a new state obtained 
by applying the effects of the action to the state variables of the old state. Three 
major classes of properties of automata are 1) state invariants, 2) simulation 
relations, and 3) properties of execution sequences. Proofs of both 1) and 2) 
have a standard structure, with a base case involving initial states and a case for 
each possible action, and hence are especially good targets for mechanization. 
The proof examples in this paper all involve state invariants and thus belong to 
class 1). 
TAME. TAME provides a template for specifying automata, a set of standard 
theories, and a set of standard PVS strategies. The TAME template provides a 
standard structure for defining an automaton. Originally designed for specifying 
LV timed automata, this template is easily adapted to specifying I/O automata. 
To define either a timed or untimed automaton, the user provides the information 
indicated in Figure 1. The standard strategies of TAME are designed to support 

Template Part User Fills In Remarks 

actions Declarations of 
non-time-passage actions 

— 

MMTstates Type of the "basic state" 
representing the state variables 

Usually a record type 

OKstate? An arbitrary state predicate 
restricting the set of states 

Default is true 

enabled_specific Preconditions for all the 
non-time-passage actions 

enabled_specific(a) = 
specific precondition of action a 

trans Effects of all the actions trans (a, s) = state reached 
from state s by action a 

start State predicate defining the 
initial states 

Preferred forms: s  =   ... or 
s   =   (#  basic   :=  basic(s) 

WITH    ... 
...    #) 

const_facts Predicate describing relations 
assumed among the constants 

Optional 

Fig. 1. Information required in the TAME template. 



mechanical reasoning about automata using proof steps that mimic human proof 
steps. These strategies are based on the set of standard theories, certain template 
conventions, and a set of special definitions, auxiliary local theories, and local 
strategies that can be generated from a template instantiation. Reference [2] 
describes the TAME user strategies in detail. 

Specifications of I/O automata in the style used in [9] and [21] can be easily 
translated into TAME specifications. The definitions of the (non-time-passage) 
actions of the I/O automaton provide the names and argument types needed 
for their TAME declarations, preconditions and effects. The definitions of the 
state variables and their types in the I/O automaton specification provide the 
information needed to define the type of the basic state as well as any needed 
auxiliary type definitions in the TAME specification. The initial state informa- 
tion for the I/O automaton is translated into the initial state predicate start 
of the TAME specification. Finally, any constants defined for the I/O automa- 
ton can be declared in the TAME specification, and any predicates relating the 
constants can be included in the TAME specification in the axiom const_f acts. 
When an I/O automaton is defined as the composition of two or more other 
I/O automata (this happens with some of the automata in the RPC-Memory 
example), the information extracted from the individual automaton descriptions 
can be combined to produce a single TAME specification in a (usually) straight- 
forward way. 

Hand proofs of invariant properties of automata typically contain a limited 
variety of proof steps. Figure 2 shows the most common proof steps and their cor- 
responding TAME strategies. TAME strategies also exist for many steps needed 
less frequently than the six listed in Figure 2. 

Proof Step TAME Strategy Remarks 
Break down into base case and 
induction (i.e., action) cases 

AUTOJNDUCT For starting an 
induction proof 

Appeal to precondition of an 
action 

APPLY_SPECIFIC_PRECOND Used, when needed, 
in induction cases 

Apply an auxiliary invariant 
lemma 

APPLY_INV_LEMMA Used in any proof; 
needs argument(s) 

Break down into cases based 
on a predicate 

SUPPOSE Used in any proof; 
needs boolean argument 

Apply "obvious" reasoning, e.g., 
propositional, equational, datatype 

TRY_SIMP Used for "it is now 
obvious " in any proof 

Use a fact from the mathematical 
theory for a state variable type 

APPLY_LEMMA Used in any proof; 
needs argument(s) 

Fig. 2. Common proof steps for invariant proofs, and their TAME strategies. 

3    Comparing TAME with PVS for I/O Automata 
For the TIP example, reference [9] describes the direct use of PVS to mechanize 
the proofs of properties. Below, we contrast the TAME approach with this ap- 
proach. For brevity, we refer to "TAME" specifications and proofs versus "PVS" 
specifications and proofs. 

As expected of two independent encodings of a problem, the PVS and TAME 
specifications have rather different structures. The PVS specification of the 
automaton TIP involves a large set of automaton-specific theories with a 
complex import structure having several (eight or nine), levels. Moreover, the 



organization of the import structure is at least partly problem-specific. In con- 
trast, the TAME specification of TIP is contained in a single automaton-specific 
theory that imports instantiations of a small collection of generic theories, and 
is thus more easily understood as a whole. There are additional, automaton- 
specific theories associated with the TAME specification that supply rewrites 
to the generic TAME strategies. However, these theories can be derived in a 
standard, automatable way from the main theory for any given automaton. 

In the PVS specification, each transition is described using the combined 
information from the precondition and effect of each action. In TAME, the pre- 
conditions and effects of actions are defined separately. In some instances, some 
information from the precondition is needed in the definition of the effect for 
the definition to pass typechecking. However, when possible, separating the pre- 
condition and effect has an advantage: it allows one to determine just when the 
precondition is important in an induction step. 

Because PVS lacks support for defining a general automaton type and for 
passing theory parameters to theories, a completely general definition of refine- 
ment is impossible to express in PVS. For this reason, TAME does not yet 
include specialized support for proving simulations or refinements. However, the 
PVS specification of TIP does include a definition of the refinement relation, us- 
ing the most convenient general form that can currently be provided with PVS1, 
and in this respect, has an advantage over the TAME specification. The generic 
theories supporting the definition of refinement in the PVS specification could 
almost certainly be adapted for use with a new TAME "refinement" template. 
Instead, a future version of TAME will use the support for theory parameters 
to be provided in a future version of PVS [15] to support a generic refinement 
template. 

The PVS encoding of state invariant lemmas, which is slightly different from 
the TAME encoding, has two lemmas associated with most invariants: the first 
states that the invariant holds in start states and is preserved by transitions 
and the second (usually proved trivially from the first) states that the invariant 
holds for all reachable states. When induction is not required in the proof— 
i.e., when the invariant follows from other invariants—only the second form is 
given. The TAME encoding of state invariant lemmas uses only the second of 
the forms used in the PVS encoding. For proofs requiring induction, the strategy 
AUTO JNDUCT first reduces this form to the first PVS encoding form and then 
performs many of the standard initial proof steps. 

The most dramatic difference between the PVS approach of [9] and the 
TAME approach is in the proofs of invariants. The TAME proofs are much 
shorter, and the significance of proof branches and individual proofs steps is 
much clearer. Moreover, the TAME proofs correspond in a very clear way to the 
hand proofs in [8] (see Section 4.1). This contrast between the PVS proofs and 
the TAME proofs is illustrated by Figures 3 and 4, which show corresponding 
TAME and PVS proofs of TIP Invariant I5. While the TAME proof execu- 
tion times in the TIP example average about three times as long as those of 
the corresponding PVS proofs (e.g., Iß, h, and 78 combined took the longest 
time, 37 seconds for TAME vs 15 seconds for PVS2), the relative simplicity and 

1 This definition makes use of a parameterized automaton type defined in a theory 
parameterized by the action and state types. 

2 These times are for PVS 2.2 on an UltraSPARC-II. 



Inv_S(s:slalcs): hool = (FORALL (c:Edj;cs): lcnglh(mq(c,s)) <= 1); 

::: Proof IcmmaJ>-likc-hand lor formula tip_invuriants.lcmma_5 
("" 
(AUTOJNDUCT) 
(("1" ;;Casc add_chi!d(addE_aclion) 
(APPLY_SPECIFIC_PRECOND) 
(SUPPOSE "c_lhcorcm = aiidE_aclion") 
((" 1" ;;Supposc c_thcorcm - addE_action 

(TRY_SIMP)) 
("2" ;;Supposc nol lc_lhcorcm = addE_ac!ion| 
(TRY_SIMP)))) 

("2" ;;Casc childrcn_known(chiIdV_action) 
(SUPPOSE "sourcc(c_thcorcm) = childV_aclion") 
(("1" ;;Supposc sourcc(c_thcorcm) = childV_aclion 
(APPLY_SPECIFICJ>RECOND) 

(APPLY_INV_LEMMA "2" "cjhcorcm") 
(TRY_SIMP)) 

("2" ;;Supposc nol |sourcc(c_lhcorcm) -childV_action| 
(TRY_SIMP)))) 

("3" ;;Casc ack(ackE_aclion) 
(SUPPOSE "cjhcorcm = ackE_aclion") 
(("I" ;;Supposc c_lhcorcm = ackE_aclion 
(APPLY_SPECIFIC_PRECOND) 
(TRY_SIMP)) 

("2" ;;Supposc nol |c_lhcorcm = ackE„action] 
(TRY_SIMP)))))) 

Fig. 3. TAME Proof (nonverbose ) of TIP Invariant h 

INV_5((s: states)): bool = (FORALL (c: E): lcngth(mq(s)(c)) <= 1) 

;;; Proof INV_5_inv- 1 for formula invarianl.INV_5_inv 

("" 
{EXPAND "invariant?") (PROP) (SKOSIMP*) (PROP) (PROPAX)))) 
(PROP) «'1- (LIET-IE) «"1" ("2" 
(C'l- (1NST7) (PROP) (INST?) (EXPAND "MS") 
(SKOSIMP*) (REPLACE-! :HIDE?T) (("1" (CT (EXPAND 'memtw") 
(EXPAND "INV_5,'j (HIDE-1) (INST.1) (ASSERT) (EXPAND Trums") 
(SKOLEM!) (HIDE 2) (ASSERT) (USE ■■INV_2_Mafh") (EXPAND "inv") 
(EXPAND "Init") (EXPAND "il") (HIDE-1 2 3) (EXPAND "INV_2") (EXPAND "target") 
(PROP) (EXPAND "length") (EXPAND "II") (INST.') (PROPAX)))) 
(HIDE-I) (ASSERT) (EXPAND "length" (ASSERT) <"2"(HIDE-2|(INST.')))) 
(INST?) (LIFT-IE) (LIFT-IE) (INST.'J ("4" 
(PROP) (PROP) (PROP) ((■!" (SKOSIMP*) 
(HIDE I) (ASSERT) (("1" (ASSERT)) (EXPAND "nwmher") (EXPAND "steps") 
(EXPAND "length") (EXPAND "length") ("2" (ASSERT) (EXPAND Trums) (EXPAND ■■R_C_slep") 
(ASSERT)) (MET-IE) (EXPAND "Icn gth"> (ASSERT) (PROP) 

<"2" (PROP) (LIFT-IE) (HIDE -2 -3-4) (REPLACE-3 :H1DE?T| 
(SKOLEM 1 <S_T|) (("["(ASSERT)) (ASSERT)))) (INST.') (EXPAND'INV_.Vj 
(INDUCT V 1) ("2" (ASSERT)) (-2" (INST1)))) (EXPAND "append") (PROPAX)) 
(("1" CX (ASSERT)))) t'3" (EXPAND "length" 1) ("5" 
(SKOSIMP*) ("2"(INST'|))) (SKOSIMP*) (EXPAND "length") (SKOSIMP*) 
(EXPAND "swpO ("2" (EXPAND "steps) (ASSERT)) (EXPAND "steps") 
(EXPAND ■■A_C_-.tcn") (SKOSIMP*) (EXPAND "C_K_s(er ("2- (EXPAND  ROOT_siop") 
IPROI') (EXPAND "steps") (PROP) (EXPAND "los") (PROP) 
(REPLACE-2:HIDE'T) (EXPAND "ACK.siep") (REPLACE-*:HIIM- ■T) (EXPAND "target") (REPLACE-2 :HIDh:?T| 
(EXPAND "INV_5■■) (PROP) (EXPAND "INV_5") (EXPAND "inv") (EXPAND "1NV_5") 
(SKOSIMI») (REPLACE-1 :HIDE'.'T) (SKOSIMP*) (EXPAND "nvmher") (PROPAX)))))) 
(UET-IK) (EXPAND "INV 5") (LIET IE) (EXPAND Troms") 

Fig. 4. PVS Proof of TIP Invariant h by Devillers et al. 

clarity of the TAME proofs strongly suggests that the human time needed to 
construct the proofs with TAME is several times shorter than that needed to 
construct proofs with the PVS-based approach of [9]. The PVS proofs clearly 
have repeating patterns; the TAME strategies take advantage of such repeating 
patterns to produce higher-level proof steps. 

Although the TAME proofs for TIP attempt to follow the hand proofs very 
closely, avoiding some of the case breakdowns in the hand proofs often produces 
shorter TAME proofs. In addition to checking hand proofs, TAME has proved 
helpful in proof exploration and can also be used, without any formal hand proof, 
to test the user's ideas of whether (or why) a property holds. 

4    Example I/O Automata, Properties, and Proofs 
This section describes the results obtained by the first author in using TAME 
to mechanize the specifications and Lamport-style hand proofs [14] of invariant 
properties of several I/O automata models. These model were from two sources: 
the Tree-Identify Protocol Specification [9,8] and the RPC-Memory Specification 
[21,20]. In each case, we show how TAME was used to check the hand proofs, 
with attention to particular techniques used and problems encountered in creat- 
ing the TAME specifications and mechanizing the proofs. Because TAME does 
not yet have specification or proof support for simulation proofs, in this exercise, 
only proofs of invariants were checked. 

6 



4.1     The Tree-Identify Protocol 
Reference [9] describes and analyzes the IEEE 1394 high performance serial 
multimedia bus protocol. The major goal of the analysis is to verify the leader 
election algorithm, the core of the tree identify phase of the physical layer of 
the protocol. An I/O automaton model for the leader election algorithm pro- 
vides the mathematical basis for the hand proof of the main property: "For an 
arbitrary tree topology, exactly one leader is elected". The tree identify protocol 
is only applied to a graph with a particular type of topology: the graph must 
be an undirected digraph (i.e., if it contains an edge e, then it also contains its 
reverse edge reverse(e)) without self-loops and with a tree-like topology.3 As the 
algorithm proceeds, particular links (directed edges) between adjacent nodes are 
added to a directed spanning tree until the tree is complete; its root is then the 
"leader". At any point during execution of the algorithm, those edges that have 
been added to the spanning tree are known as child edges. 

In [9], the algorithm is specified in terms of an I/O automaton TIP. Ap- 
pendix A contains the original specification of TIP from [9]. A number of invari- 
ant properties (see Appendix B for some examples) are established for TIP and 
used to prove that TIP is a refinement of a more abstract automaton SPEC, 
which captures the required behavior. We focused on TIP and its invariants, 
due to our interest in automating the hand proofs of the invariants. The TAME 
translation of this specification was easily obtained from the I/O automaton 
specification using TAME's standard template [3,2]. 

The first fifteen invariants from [9], h through Il5, form a sequence estab- 
lishing that at most one leader is elected by the TIP algorithm. Devillers has 
developed detailed Lamport-style hand proofs for these invariants [8]. Each hand 
proof is one to two pages in length. The full set of invariants from [9] includes 
two extra invariants, I16 and In, used in the proof that at least one leader is 
elected. All but the invariant 715 were proved using TAME and no other math- 
ematical superstructure, except a small set of auxiliary lemmas describing the 
relationship between a link and its inverse link (needed for invariants 7"i0, In, 
112 and 714). These auxiliary lemmas were used to translate those steps in the 
hand proofs whose justification was "math". 

Figures 5 and 6 show the correspondence between steps from a Lamport- 
style proof and TAME steps for invariant 74. Figure 5 shows only that part, a 
single branch, of the hand proof that TAME found to be nontrivial; Figure 6 
shows the complete TAME proof of J4. In the hand proof, the values s and t 
represent the prestate and poststate in the induction step, and the values / and 
g are, respectively, the Skolem constants for the quantified variables e and / in 
h, which are automatically named e_theorem and f ..theorem by TAME. The 
appeal "by IH" to the inductive hypothesis at step < 3.1 > in the hand proof 
is handled automatically by TAME's AUTO JNDUCT strategy whenever, as in 
this case, the correct instantiation of its variables is the Skolem constants. The 
only steps the TAME user must supply, besides TRY-SIMP, are the SUPPOSE 
for the case distinction at step < 3.2.2 > and the APPLY_SPECIFIC_PRE- 
COND and INST corresponding to application of the precondition to / and g at 
step < 3.2.3.1 >. Checking that / and g are of type to(y) is handled by proving 

...,t)„ That is, for each pair of vertices v,w, there is a unique sequence of vertices vo,vi,...,.,. 
such that (1) vo = v, (2) vn = to, (3) for all 0 < i < n - 1, (Vi, vi+i) € Edges, and 
(4) no vertex occurs more than once in the sequence. 



<3> Assume a = C.KNOWN(V), v £ V 
<3.1> . s |= U (by III) 
<3.2> . Take arbitrary /, g, v' such that target(f) — targel(g) — v A g ^ / 
<3.2.1>     . . s |= init(u') V child[f] V cfci(rf[<|] 
<3.2.2>     . . Case distinction on v' = v 

<3.2.3>     . . Assume v' — v 

<3.2.3.1> . . . s \= child[f] \fchild[g] (pre. C-KNOWN(v) and f,g eto(v)) 

<3.2.3.2> . . . t (= chi(rf[/] V child[g] (eff. C.KNOWN(v) does not change c/i«M) 
<3.2.3.3> . . . ( |= init(v) V cfti/rf[/] V c/iilrf[j] 
<3.2.4>     . . Assume -1(^' — v) 
<3.2.4.1> . . . s |= init(v') V child[f) V cfti(d[3j (by <3.2.1>) 

<3.2.4.2> . . . t\= init(v') V cfti(d[/] V child[g] (eff. C.f(WOTO(« does not change child 
or im([»'] by <3.2.4>) 

<3.2.5>     . . t\= init(v') V child[f] V chi(rf[s] 

<3.3> . t\= U (def. U)  

Fig. 5. Single Nontrivial Branch of Lamport-style Proof of Invariant l\ 

;;; Proof lcmma-4-3 for formula tipJnvariants.lcmma.4 
("" (AUTOJXDUCT) 

;;Casc childrcn-known(childV^iction) < 3 >, < 3.1 >, < 3.2 >, < 3.2.1 > 
(SUPPOSE "v-thcorem = childV^ction") < 3.2.2 > 
(("1" ;;Supposc v-thcorcm = childV-action < 3.2.3 > 

(APPLY-SPECIFIC-PRECOXD) < 3.2.3.1 > 
;;Applying the precondition 
;;init(childV_action, prostate) 
;; & 
;;      (FORALL (c: Edges): 
;; FORALL (f: tov(childV-action)): 
;; child(o, prestate) OR child(f, prostate) OR c = f) 
(IXST "spccific-piecondition_part_2'' "c.thcorcm" "f-theorcm") 
(("1" (TRY-SIMP)) ("2" (TRY.SIMP))))      < 3.2.3.2 >, < 3.2.3.3 > 

("2" ;;Suppose not [v.thoorcm = childV_action]     < 3.2.4 > 
(TRY-SIMP)))) < 3.2.4.1 >, < 3.2.4.2 > 

< 3.2.5 > 
<3.3> 

Fig. 6. Complete TAME Proof (verbose) of Invariant I4 

a TCC generated by PVS when the INST is done—this is accomplished by the 
proof step TRY.SIMP at "2" in the line right after the INST step. The effect of 
the action, the appeal to previous proof steps, and setting up invariant I4 in the 
poststate as a proof goal are all handled automatically by the TAME strategies 
AUTO JNDUCT and TRYJSIMP. 

Invariant I15 is especially important because it is the only invariant used in 
the proof that TIP is a refinement of SPEC [9]. /15 is also the only invariant that 
requires knowledge of the graph topology of the tree identify protocol network. 
Both the PVS proof of J15 described by Devillers et al. in [9] and the TAME 
proof of/is required formalizing some of this knowledge. The (natural language) 
hand proof in [9] is an informal proof by contradiction, which the TAME proof 
resembles at a high level. Devillers et al. needed a few days to construct the PVS 
proof, because they took the time to specify a general PVS theory for acyclic 
finite strongly-connected digraphs. Our approach, which benefited from their 
experience, was more economical. The hand proof of 7i5 and the way it uses 
invariant /14 suggested that to prove Ii5 in TAME, we needed to formalize only 
the fact that the graph topology is connected.4 The TAME proof of invariant 

The fact that the graph topology is tree-like is used only in a proof that was not 
mechanized by Devillers et al. [9]: the proof that at least one leader is elected. 



/is then uses two auxiliary invariants: (i) Any adjacent link of a child link is 
also a child link; and (ii) Any link connecting to the source of a child link via a 
path of adjacent links is also a child link. A link / is adjacent to a link e if / is 
an incoming link to the source of e, i.e., target(f) = source(e). Invariant (ii) is 
proved by induction on the length of the path, using Invariant (i), a consequence 
of Invariant I14. The hand proof of /15 in [9] relies on Invariants /14 and In 
plus the existence of a unique cycle-free path between any two vertices. Our 
corresponding proof in TAME uses Invariants (ii) and I\ 1 plus the connectedness 
axiom. 
4.2     RPC-Memory Specification Problem 
The RPC-Memory problem, posed in 1994 by Broy and Lamport at the Dagstuhl 
Workshop on Reactive Systems, concerns the specification of a memory compo- 
nent and a remote procedure call (RPC) component for a distributed system and 
the implementation of both. The I/O automata solution in [21] contains approx- 
imately twenty I/O automata and proofs of many kinds of properties: relative 
safety, liveness, deadlock-freeness, properties of quiescent states, implementation 
(based on weak simulation or weak refinement properties), and state invariants. 
Hand proofs of these properties are provided in [20]. Almost all proofs of state 
invariants are in the Lamport style. Since our goal was to automate these proofs, 
we focused on three automata for which invariants were proved: Memory*, which 
models one version of the memory; Memorylmp, which models the combination 
of a "reliable" version of the memory with the RPC, connected through an ap- 
propriate front end for the RPC; and Imp, which models an implementation of 
a lossy version of the RPC, with timing information added.5 

Few problems arose in the TAME mechanization of the Memory*, Memo- 
rylmp, and Imp specifications and the detailed proofs of their properties from 
[21,20]. Nevertheless, the mechanization did expose some incompleteness and 
inconsistency in the specifications and some missing and incorrect details in the 
proofs. For example, 1) the intended types of certain constants are unclear, 2) 
there is a type inconsistency in the definition and use of one function, and 3) a 
missing detail in the proof of a Memory* invariant required the identification 
and proof of an auxiliary invariant lemma in TAME. 

Aspects of the TAME mechanization required some creativity. In particu- 
lar, a few hand proofs were only sketched, so we needed to establish the details 
of the corresponding TAME proofs, including some needed auxiliary invariants. 
Further, the encoding of Memorylmp and Imp using the TAME specification 
template required renaming state variables to avoid name clashes and careful 
definition of the union types and subtype recognizers needed to define the com- 
position of certain transitions from separate components. 

Despite the above complications, the specification and proofs for Memory*, 
Memorylmp, and Imp in TAME were straightforward. The hand proofs for the 
Memory* invariants were easily checked by applying only four TAME steps: 
AUTOJNDUCT, APPLYJ3PECIFIC-PRECOND, APPLY JNVJLEMMA, and 
TRY-SIMP. The example Memorylmp led to improvements in some existing 
TAME strategies, and the addition of two new ones: INSTJN and SKOLEM JN 
5 Although Imp does involve timing information, this information is encoded using 

a set of independent clocks instead of a universal clock. Instead of using the time 
features of the timed automaton template of TAME, we treated the time step action 
for Imp as an ordinary I/O automaton action. 



(see Section 5). Given these improvements, the TAME proofs for Memory Imp 
used only the four preceding proof steps plus SUPPOSE, DIRECT_PROOF, 
INSTJN, SKOLEMJN, and the PVS proof step EXPAND. Finally, the TAME 
proofs for Imp were done using only the four preceding proof steps plus SUP- 
POSE, DIRECT_PROOF, and the PVS proof step INST. 

5    Discussion 
This section discusses the first author's experience in using TAME to specify and 
prove properties of I/O automata, including the time required, the problems that 
had to be overcome to extract TAME specifications from I/O automata models, 
and the effort required to prove state invariants with TAME. Our goal was to 
understand the difficulty of learning how to use TAME, for a user without any 
previous knowledge of PVS, I/O automata, or TAME. This section also discusses 
enhancements made to TAME as a result of the first author's feedback. 

Specification in TAME. The first TAME specifications that the first author 
developed were of the I/O automata Memory*, Memorylmp, and Imp from the 
RPC-Memory problem [21]. Understanding previous TAME specifications re- 
quired about one week. Specifying Memory* in TAME required two additional 
days. The built-in templates were useful for understanding what information 
about the model was needed and how to organize this information. Defining the 
invariants of the Memory* model in TAME was easy, given the predefined tem- 
plate for specifying invariants. The definition of the auxiliary theories (which 
currently must be developed by hand) took extra time but was straightforward. 

After this initial experience, the specification of TAME theories for Mem- 
orylmp required only a few days. The difficulty in this case was learning how 
to use TAME to combine the three component I/O automata (RPC, ClerkR 
and RMemory1) and their corresponding input and output actions into a single 
automaton specification. A complication was handling certain input actions hav- 
ing different definitions depending on the type of the parameter to the action. 
The parameters of such actions had to be represented as union types using the 
PVS datatype construct. The first author's initial specification of Memorylmp 
had some unprovable TCCs connected with types specified in [21] in terms of 
membership, subtyping, and distinction between members. Although the TCCs 
could have been proved by including axioms specifying these relationships, one 
lesson learned was that redefining such types in terms of a supertype of related 
types using the PVS datatype construct both permits the TCCs to be handled 
automatically by PVS and avoids the possible creation of inconsistent axioms. 

The specification of Imp was straightforward and almost problem-free. The 
only difficulty was determining that the "for-do" statement in the definition of 
the time-step action TIME needed to be formalized using PVS's LAMBDA con- 
struct. Specification of the model and proofs of the invariants in TAME took 
approximately three days, with some of the time used to develop the auxiliary 
theories. After the experience with the more complex RPC-Memory specifica- 
tions, representing the specification for TIP in TAME was very simple. 

For a new user, the templates for the automaton specification and for the 
invariant lemma definitions proved extremely useful. The specification template 
provides a starting point for specifying an automaton in PVS without a deep 
knowledge of PVS; the user simply fills in the actions, the names and types 
of state variables, the action preconditions and action effects, and the start 
states, and provides a few auxiliary definitions of types and constants. The user 
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must also generate some auxiliary functions, strategies, and theories needed to 
support the TAME strategics. This process, which will eventually be automated, 
is tedious but straightforward to do by hand, once the specification template is 
filled in. 

Proofs using TAME. Once the way to apply the TAME strategies and the 
nature of their correspondence with the steps in the hand proofs was understood, 
the TAME proofs of the three invariant properties for Memory* (and the fourth, 
auxiliary property required to prove the first) were easily completed in a few 
hours. Proving the twelve invariants of Memorylmp was the most difficult part, 
for two reasons: 1) the lack, in some cases, such as the corollaries, of complete 
and precise hand proofs, and 2) the inability of the strategies to capture (or at 
least to simply capture) a few of the proof steps, such as the one requiring the 
application of an invariant property to a poststate. Once the TAME strategies 
were improved (see Section 4.2 and below), proving these invariants required a 
little over two weeks. As with specifying Imp, proving the four properties of Imp 
in TAME was straightforward and almost problem-free. 

After experience with the more complex RPC-Memory examples, and be- 
cause the formal and clear hand proofs in [8] were almost immediately repro- 
ducible in TAME, obtaining TAME proofs for TIP was very simple. The TIP 
specification and proofs of the first fourteen invariants for TIP took three days. 
Due to the need to discover and formalize the minimal knowledge needed about 
the graph structure, approximately two additional days were required to prove 
the last invariant, /15. 

In proving the invariants of the automata considered in this paper, TAME 
was used only twice (on invariants J16 and In of TIP) to construct proofs with- 
out any handwritten proofs as guidance.6 The proof of Ii6 in TAME required no 
thought; we simply applied AUTOJNDUCT, APPLYJ3PECIFICPREC0ND, 
and TRYJ3IMP. The proof of J17 used these steps, plus repeated applications 
of APPLYJNV.LEMMA and APPLYJLEMMA. Finding the right lemmas to 
apply required a few hours; nevertheless, TAME saved the user from micro- 
management of the proof. TAME was also used to mechanize several simply 
sketched hand proofs, such as Corollary 30 of Memorylmp. After studying the 
hand proofs, we formulated an auxiliary invariant lemma that could be proved 
with TAME and was sufficient to support the TAME proof of Corollary 30. 
Thus, in all cases in which the proof of a lemma was incomplete, using TAME 
resulted in a structured proof for the lemma. 

TAME Enhancements Due to User Feedback. Feedback from the first 
author led to improvements in TAME that include an improved template con- 
vention, improvements to existing strategies, and the addition of new strategies. 

The strategy AUTOJNDUCT discharges the base (start state) case in an 
induction proof automatically in most cases, provided that the start state pred- 
icate start (s) from the TAME template is given as an equality defining s. The 
Memory* example led to a new improved method of formulating start which 
in effect subsumes the old one. Previously, start (s) has been expressed as an 
equality between the argument s and an explicit record value (a single start 
state). In the new method, start(s) is an equality between s and s with its 
time-related components assigned the standard initial values and its basic com- 

The proofs given for 7i6 and In in [8] are simply "done in PVS". 
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ponent (which covers non-time-related state variables) partially or fully updated. 
This formulation matches the initialization of the I/O model for Memory*, which 
defines the initial values of only three of the five state variables. 

To facilitate a faithful translation of some of the proofs from the example 
Memorylmp into TAME, improvements and additions to the TAME strategies 
were needed. For example, in the proof of Lemma 35, an invariant lemma is 
applied in an induction step to the poststate, rather than, as is more common, to 
the prestate. TAME previously represented the poststate as trans (a,prestate), 
where a is the action of the induction step, and recorded among the hypothe- 
ses that it is a reachable state, facilitating application of an invariant lemma 
to the poststate. However, applying an invariant lemma to trans (a,prestate) 
involves not only using a complex term (containing the current action a as an 
argument) but, once the invariant lemma is applied, expanding the function 
trans. Improvements to AUTOJNDUCT and APPLYJNVXEMMA now hide 
this complexity from the user, replacing the term trans (a,prestate) with the 
name poststate, and allowing the user to simply invoke the invariant lemma 
on poststate plus any other arguments to the lemma. 

The proofs of Lemmas 27 and 29 demonstrated the difficulty of following the 
steps in a hand proof when one cannot instantiate or skolemize with respect to 
embedded quantifiers in PVS. To address this problem, the strategies INST.IN 
and SKOLEMJN were added to TAME to approximate internal instantiation 
and skolemization. These strategies perform automated simplification in an at- 
tempt to handle the non-quantified parts of a formula, and then use the normal 
PVS proof steps INST and SKOLEM. In some cases (as unfortunately happens 
for Lemma 35), this leads to some wasteful proof branching, but in many cases, 
this works well. The proof of Lemma 35 also inspired a general improvement 
that allows TRY .SIMP to cover even more "obvious" general reasoning steps. 

6    Related Work 
An increasing number of proof assistants, including assistants for the Duration 
Calculus [24], for the TRIO logic [1], and for proving invariant properties of 
DisCo specifications [13], use PVS as the underlying prover. The Duration Cal- 
culus and TRIO assistants support proofs using steps from particular logics. 
The DisCo assistant supports proofs of properties of DisCo specifications, using 
Lamport's Temporal Logic of Actions, with specialized PVS strategies generated 
by a compiler. These strategies, though uniform in concept, are specific to each 
given application. A similar approach was used in an earlier version of TAME; 
the PVS enhancements, especially the documentation of the internal structure 
of PVS sequents, have allowed us to make the TAME strategies more generic. 

Several researchers have applied mechanical theorem provers to LV timed 
automata or I/O automata. In addition to the application of PVS described in 
[9], reference [16] describes how the Larch theorem prover LP was used to prove 
properties of several protocols specified as LV timed automata, and reference 
[19] describes a verification environment for I/O automata based on Isabelle; 
like [9], both include simulation proofs as well as proofs of invariants. In addi- 
tion, [19] develops a detailed metatheory for I/O automata. TAME has an ad- 
vantage over Larch and Isabelle: it produces compact, informative proof scripts. 
Although Larch provides detailed proof scripts with some information on the 
content of a proof, Larch does not support the matching of high level natural 
proof steps with user-defined strategies, nor the automatic documentation of 
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a proof through comments provided by TAME. While Isabelle tactics perform 
some of the services of the TAME strategies [19], Isabelle does not save proof 
scripts for completed proofs. 

A toolset has been developed that provides an automatic translator from the 
IOA language for I/O automata to Larch specifications and an interface to the 
Larch theorem prover LP [11]. This toolset will eventually include a similar trans- 
lator to PVS that is being developed by Devillers and Vaandrager; a prototype 
now exists [10]. TAME currently has a prototype translator from specifications 
in the SCR language to TAME specifications [6], and an automatic translator 
from IOA specifications is planned. 

7    Conclusions and Future Work 
The work described in this paper has provided valuable user feedback about the 
utility of the TAME templates and strategies and an opportunity to compare 
the application of PVS to a particular problem, the TIP verification, in two 
ways: directly, or by using TAME. User feedback helped us improve TAME 
by refining existing strategies, by adding new strategies, and by improving the 
default template for the start state predicate. The results of the TIP comparison 
clearly demonstrate the advantages of using TAME for specifying and proving 
invariant properties of I/O automata. These advantages of TAME have recently 
also been noted by another new TAME user [7]. 

This was the first time TAME was used to mechanize Lamport-style proofs. 
Constructing TAME proofs that very closely follow hand proofs presented in this 
style was generally straightforward. However, like Rudnicki and Trybulec [22], we 
found that Lamport-style proofs are still informal and thus may have incorrect 
or missing details. In addition, as illustrated in Figures 5 and 6, many details 
included in Lamport-style proofs need not be made explicit in TAME proofs; 
some micro-steps in proofs are directly managed by the TAME strategies, which 
employ the PVS decision procedures, along with some rewriting and forward 
chaining, to automatically handle most low-level proof steps. Some hand proofs 
can be shortened even further in TAME. In fact, the hand proofs mechanized 
in TAME usually make clear which facts are needed in proving each result. Use 
of the TAME step TRY.SIMP avoids many explicit uses of "case distinction", 
provided all relevant facts for the proof branches for the distinct cases are first 
provided. However, simplified TAME proofs can sometimes obscure details of 
human reasoning that are important to understanding a proof. 

Future plans for TAME are to add support for proofs of forward simula- 
tion, backward simulation, and refinement relations between automata specified 
with the TAME specification template, to provide an interface for generating 
template instantiations and their auxiliary theories and strategies from minimal 
user input, and to generate natural language explanations of TAME proofs. 
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A    The I/O Automaton TIP from [9] 

Internal: ADDXHILD, CHILDREN-KNOWN, RESOLVE-CONTENTION, ACK 
Output: ROOT 
State Variables: init : V —> Bool Init: Vu,e : im'fft)] 

contention : V -> Bool A^contcntion[v] 
root : V —> Bool A-roor[t>] 
child : E -> Bool A-.c/iiM(e] 
mq : E -> Bool* Amg|e] = empty 

Actions: 

ADD.CHILD(e : E) ,4CA'(e : E) 
Precondition : Precondition : 

Amif [target (e)] A-unit [target (e)] 
Amg[e] ^ empty Amq(e) ^ empty 

Effect : Effect : 
c/ii7d[e] := 1 conte.ntion[Urget(e)} := -"rid(m<j[e]) 
mq\e] := tl(m9[e]) mq[e\ := tl(mij[e]) 

RESOLVE.CONTENTION(c : E) ROOT(v : V) 
Precondition : Precondition : 

Acon(enh'on[source(e)] A-iinrt[u] 
Acon(ention[target(e)] A->confen(ion[t>] 

Effect : /\^root[v] 
child[e} := 1 AVe e to(u) : child[e] 
conrenrion[source(e)] : = 0 Effect : 
con/enhon[target(e)] :~ 0 roo/[i;] := 1 

CHILDREN.KNOWN(v : V) 
Precondition : 

Ainit[tj] 
AVe, / € to(r;) : child[e] V child[f] V c = f 

Effect : 
inif[u] ::= 0 
fore G from(u) domq[e] : = append(c/iiM[e~']. 77)ij[e]) 

B    Some Invariants of TIP from [9]7 

4. // a node has left the initial stage then all links, or all links but one, are child links. 
U{e, f, v) = target(e) = target(/) =«Ae//-+ init[v] V child[e] V child(f) 

5. Each link contains at most one message at a time. 
h(e) = length(rag[e]) < 1 

6. // a node is in the initial stage, then none of its neighbors is involved in root con- 
tention. 

h(e) = inii[source(e)] —> ->contention[target(e)] 
7. Child links are empty. 

h(e) = child[e] -> mq[e] = empty 
8. // a node is involved in root contention, then all its incoming links are empty. 

h(e) — contention[target(e)] —> mq[e] = empty 
10. A node never sends a parents request to its children. 

Iio{e) = mq[e] ^ empty A -ihd(m<j[e]) —> -ic/iiZd[e_1] 
11. Two nodes can never be children of each other. 

in(e) = child[e] —> -ichild[e~l] 
14. All incoming liks of the source of a child link, except for its inverse, are child links 

as well. 
7i4(e, /) = child[e] A source(e) = target(/) A e # /_1 -¥ child[f] 

15. There is at most one node for which all incoming links are child links. 
/is = (3v\/e € to(v) : child[e\) -> (3!uVe € to(w) : child[e]) 

7 We have dropped the argument v to /15. 
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